首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427489篇
  免费   48162篇
  国内免费   153篇
  2018年   3962篇
  2016年   5367篇
  2015年   7030篇
  2014年   8315篇
  2013年   11455篇
  2012年   13093篇
  2011年   13479篇
  2010年   9247篇
  2009年   8585篇
  2008年   12305篇
  2007年   12819篇
  2006年   12012篇
  2005年   11475篇
  2004年   11530篇
  2003年   10781篇
  2002年   10611篇
  2001年   17545篇
  2000年   17544篇
  1999年   13915篇
  1998年   4889篇
  1997年   5131篇
  1996年   4790篇
  1995年   4661篇
  1994年   4532篇
  1993年   4572篇
  1992年   11705篇
  1991年   11602篇
  1990年   11352篇
  1989年   10972篇
  1988年   10543篇
  1987年   10138篇
  1986年   9436篇
  1985年   9275篇
  1984年   7791篇
  1983年   6743篇
  1982年   5219篇
  1981年   4654篇
  1980年   4486篇
  1979年   7466篇
  1978年   5910篇
  1977年   5426篇
  1976年   5233篇
  1975年   5638篇
  1974年   6352篇
  1973年   6194篇
  1972年   5794篇
  1971年   5244篇
  1970年   4661篇
  1969年   4603篇
  1968年   4449篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
We used a strategy based on long PCR (polymerase chain reaction) for detection and characterization of mitochondrial DNA (mtDNA) rearrangements in two patients with clinical signs suggesting Pearson syndrome and Kearns-Sayre syndrome (KSS), respectively, and one patient with myopathic symptoms of unidentified origin. Mitochondrial DNA rearrangements were detected by amplification of the complete mitochondrial genome (16.6 kb) using long PCR with primers located in essential regions of the mitochondrial genome and quantified by three-primer PCR. Long PCR with deletion-specific primers was used for identification and quantitative estimation of the different forms of rearranged molecules, such as deletions and duplications. We detected significant amounts of a common 7.4-kb deletion flanked by a 12-bp direct repeat in all tissues tested from the patient with Pearson syndrome. In skeletal muscle from the patient with clinical signs of KSS we found significant amounts of a novel 3.7-kb rearrangement flanked by a 4-bp inverted repeat that was present in the form of deletions as well as duplications. In the patient suffering from myopathic symptoms of unidentified origin we did not detect rearranged mtDNA in blood but found low levels of two rearranged mtDNA populations in skeletal muscle, a previously described 7-kb deletion flanked by a 7-bp direct repeat and a novel 6.6-kb deletion with no repeat. These two populations, however, were unlikely to be the cause of the myopathic symptoms as they were present at low levels (10–40 ppm). Using a strategy based on screening with long PCR we were able to detect and characterize high as well as low levels of mtDNA rearrangements in three patients. Received: 10 March 1997 / Accepted: 20 May 1997  相似文献   
35.
The effects ofphosphorylation status on Ca2+release and Ca2+ removal werestudied in fast-twitch flexor digitorum brevis and slow-twitch soleusskeletal muscle fibers enzymatically isolated from wild-type andphospholamban knockout (PLBko) mice. In all fibers the adenosine3',5'-cyclic monophosphate-dependent protein kinase (PKA)inhibitor H-89 decreased the peak amplitude of the intracellularCa2+ concentration([Ca2+]) transient fora single action potential, and the PKA activator dibutyryl adenosine3',5'-cyclic monophosphate (DBcAMP) reversed this effect,indicating modulation of Ca2+release by phosphorylation status in all fibers. H-89 decreased thedecay rate constant of the[Ca2+] transient andDBcAMP reversed this effect only in phospholamban-expressing fibers(wild-type soleus), indicating modulation ofCa2+ removal only in the presenceof phospholamban. A high basal level of PKA phosphorylation in soleusfibers maintained under our control conditions was indicated bythe lack of effect of direct application of DBcAMP onCa2+ release orCa2+ removal in wild-type or PLBkosoleus fibers and was confirmed by analysis of phospholamban fromwild-type soleus fibers.

  相似文献   
36.
Lactococcus lactis ssp. cremoris was entrapped within a Ca-alginate matrix, and an in situ spectrophotometric method for monitoring cell population in calcium alginate beads described. The intracapsular cell population can be estimated by measuring the optical density of beads containing cells, using cell-free beads as reference, or by measuring absorbance of a liquified bead suspension. Alginate beads, and beads coated with chitosan type I, II, and I and II mixtures, were examined for cell release. Lower viscosity chitosan (type I) coatings reduced cell release by a factor of 100 from105 cfu ml−1 to 103 cfu ml−1 after 6 h of fermentation. Reuse of chitosan I coated alginate beads also showed a reduction in cell release by a factor of 100. Cell loading and initial cell growth within the beads greatly affected cell release. Reducing the initial cell release would lower the overall levels of cell release throughout the fermentation. Compared to non-immobilized cultures, a 20–40% reduction in the lactic acid production rate was observed for alginate beads and chitosan I coated alginate beads, respectively. This reduction can be compensated for by increasing the intracapsular cell loading during immobilization, or before the onset of fermentation.  相似文献   
37.
 The heme protein wheat germ peroxidase (isoenzyme C2) and its cyanide-inhibited form have been investigated by means of electronic, CD and paramagnetic NMR spectroscopy. The data indicate a protein environment of the active site distinct from that of horseradish peroxidase (HRP), with a larger solvent accessibility. The iron is pentacoordinated at neutral and low pH, whereas a hydroxyl anion may be bound at alkaline pH. The fifth axial ligand is a His residue with a partial anionic character, as found in other peroxidases. A spin equilibrium is observed at high enzyme concentrations. Received: 17 September 1996 / Accepted: 10 January 1997  相似文献   
38.
Cassava mesocarp carbohydrate and its modified form were used as fillers in low density polyethylene to give plastic films that were biodegradable. It was found that the tensile strength of the films decreased with an increase in the amount of the filler incorporated. The water absorption results of the films showed that modification of the cassava mesocarp carbohydrate made it hydrophobic and therefore more compatible with the polyethylene.  相似文献   
39.
The ability of bovine intermediate lobe secretory vesicle membrane-associated enzyme(s) and purified, soluble paired basic residue-specific, pro-opiomelanocortin converting enzyme (Loh, Y.P., Parish, D. C., and Tuteja, R. (1985) J. Biol. Chem. 260, 7194-7205) to cleave bovine NH2-terminal pro-opiomelanocortin1-77 (N-POMC 1-77) was investigated. Purified pro-opiomelanocortin converting enzyme and an enzyme activity associated with the secretory vesicle membrane were shown to cleave bovine N-POMC1-77 to two major products: N-POMC1-49 and Lys-gamma 3-melanotropin (MSH), and one minor product, gamma 3-MSH. These products were identified by their retention times on high performance liquid chromatography, immunological characteristics, and for Lys-gamma 3-MSH, amino acid composition. The products generated indicate cleavage preferentially between Arg 49-Lys 50 of bN-POMC1-77 (where b indicates bovine), which is identical to the processing pattern found in the bovine intermediate lobe in situ. The membrane converting activity was shown to be stimulated by 5 mM Ca2+ and has a pH optimum of 4-5 and an inhibitor profile characteristic of an aspartic protease. This suggests that the membrane-associated enzyme involved is very similar or identical to the purified, soluble pro-opiomelanocortin converting enzyme, which has previously been reported to be an acidic, aspartic protease responsible for the initial steps of POMC processing. The results of this study lead to the proposal that the lack of processing of the Arg49-Lys50 site in POMC in the anterior lobe versus the intermediate lobe of the pituitary in vivo may be due to other regulatory mechanisms rather than invoking the existence in the intermediate lobe of another enzyme specific for this site, different from pro-opiomelanocortin converting enzyme.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号